Science Mathematics

A History of Greek Mathematics: Volume 2. From Aristarchus by Sir Thomas Heath PDF

By Sir Thomas Heath

ISBN-10: 0486240746

ISBN-13: 9780486240749

ISBN-10: 0543968774

ISBN-13: 9780543968777

"As it truly is, the booklet is integral; it has, certainly, no severe English rival." — Times Literary Supplement
"Sir Thomas Heath, most efficient English historian of the traditional specified sciences within the 20th century." — Prof. W. H. Stahl
"Indeed, considering that rather a lot of Greek is arithmetic, it truly is controversial that, if one may comprehend the Greek genius absolutely, it might be a great plan to start with their geometry."
The point of view that enabled Sir Thomas Heath to appreciate the Greek genius — deep intimacy with languages, literatures, philosophy, and all of the sciences — introduced him probably towards his loved matters, and to their very own excellent of knowledgeable males than is usual or perhaps attainable this day. Heath learn the unique texts with a serious, scrupulous eye and taken to this definitive two-volume background the insights of a mathematician communicated with the readability of classically taught English.
"Of the entire manifestations of the Greek genius none is extra amazing or even awe-inspiring than that that's printed via the heritage of Greek mathematics." Heath documents that heritage with the scholarly comprehension and comprehensiveness that marks this paintings as evidently vintage now as whilst it first seemed in 1921. The linkage and cohesion of arithmetic and philosophy recommend the description for the total historical past. Heath covers in series Greek numerical notation, Pythagorean mathematics, Thales and Pythagorean geometry, Zeno, Plato, Euclid, Aristarchus, Archimedes, Apollonius, Hipparchus and trigonometry, Ptolemy, Heron, Pappus, Diophantus of Alexandria and the algebra. Interspersed are sections dedicated to the background and research of recognized difficulties: squaring the circle, perspective trisection, duplication of the dice, and an appendix on Archimedes's evidence of the subtangent estate of a spiral. The assurance is far and wide thorough and really apt; yet Heath isn't content material with simple exposition: it's a disorder within the latest histories that, whereas they kingdom mostly the contents of, and the most propositions proved in, the nice treatises of Archimedes and Apollonius, they make little try and describe the approach in which the consequences are got. i've got accordingly taken pains, within the most vital situations, to teach the process the argument in enough element to let a reliable mathematician to know the strategy used and to use it, if he'll, to different comparable investigations.
Mathematicians, then, will have fun to discover Heath again in print and obtainable after a long time. Historians of Greek tradition and technology can renew acquaintance with a typical reference; readers ordinarily will locate, relatively within the vigorous discourses on Euclid and Archimedes, precisely what Heath capacity through impressive and awe-inspiring.

Show description

Read or Download A History of Greek Mathematics: Volume 2. From Aristarchus to Diophantus PDF

Similar science & mathematics books

Read e-book online Surveys in Modern Mathematics PDF

This number of articles from the autonomous collage of Moscow is derived from the Globus seminars held there. they're given through global specialists, from Russia and in other places, in numerous components of arithmetic and are designed to introduce graduate scholars to a few of the main dynamic components of mathematical examine.

Read e-book online Brown-Peterson homology: an introduction and sampler PDF

This e-book is basically directed to graduate scholars attracted to the sphere and to algebraic topologists who desire to examine anything approximately BP. starting with the geometric history of complicated bordism, the writer is going directly to a dialogue of formal teams and an creation to BP-homology. He then offers his view of the main advancements within the box within the final decade (the calculation of the homology of Eilenberg-MacLane areas during this part could be worthwhile in educating complicated algebraic topology courses).

Read e-book online Das Mathematikbuch als Instrument des Schülers: Eine Studie PDF

Mathematikschulbücher zählen nach wie vor zu den wichtigsten Hilfsmitteln für das Lehren und Lernen von Mathematik. Ihre tatsächliche Bedeutung lässt sich jedoch nur vor dem Hintergrund ihrer faktischen Nutzung beurteilen. Sebastian Rezat stellt eine Grounded-Theory-Studie zur Nutzung des Mathematikbuches durch Schüler der Jahrgangsstufen sechs und zwölf zweier Gymnasien vor.

Additional info for A History of Greek Mathematics: Volume 2. From Aristarchus to Diophantus

Example text

N}. Wir k¨onnen also Zahlen a11 , . . , at1 ∈ {1, . . , n} so w¨ahlen, daß t {1, . . , n} = · ai1 . i=1 Setzen wir nun ki = |ai1 | und aij = σj−1 (ai1 ), dann gilt wegen (21) t {1, . . , n} = · (22) {ai1 , ai2 , . . , aiki }. i=1 Es bleibt also noch σ = σ1 ◦ · · · ◦ σt zu zeigen, wobei σi = (ai1 · · · aiki ) ein ki -Zyklus ist. Sei dazu b ∈ {1, . . , n}, so ist b = aij = σj−1 (ai1 ) f¨ ur ein 1 ≤ i ≤ t und ein 1 ≤ j ≤ ki . Wenden wir nun σ auf b an, so erhalten wir σ(b) = σ(aij ) = σj (ai1 ) = aij+1 , ai1 , falls j < ki , falls j = ki = σi (b).

E. Sind u, v ∈ α(U), dann existieren g, h ∈ U mit α(g) = u und α(h) = v. Da g · h ∈ U, gilt: u ∗ v = α(g) ∗ α(h) = α(g · h) ∈ α(U). Außerdem gilt g−1 ∈ U und somit: u−1 = α(g) −1 = α g−1 ∈ α(U). 28, daß α(U) eine Untergruppe von H ist. f. Seien g, h ∈ α−1 (V), so gilt α(g·h) = α(g)∗α(h) ∈ V, da V eine Untergruppe −1 ist. Also gilt g · h ∈ α−1 (V). Außerdem gilt α g−1 = α(g) ∈ V, wieder da −1 −1 V eine Untergruppe ist. Somit liegt auch g in α (V). 28, daß α−1 (V) eine Untergruppe von G ist. g. , da G eine Untergruppe von G ist.

Sie erzeugen die sogenannte Di¨edergruppe D2n = πn , σn ≤ Sn der Ordnung 2n. 61 55 im Boso kann man πn als Drehung des n-Ecks im Uhrzeigersinn um den Winkel 2π n genmaß auffassen, die die Ecke mit Nummer 1 auf die Ecke mit Nummer 2 abbildet, die Ecke mit Nummer 2 auf die Ecke mit Nummer 3 und so weiter. Ensprechend kann man σn als Achsenspiegelung interpretieren. Die Di¨edergruppe D2n ist dann die volle Symmetriegruppe des regul¨aren n-Ecks. Jedes Element entspricht entweder einer Drehung oder einer Spiegelung.

Download PDF sample

A History of Greek Mathematics: Volume 2. From Aristarchus to Diophantus by Sir Thomas Heath


by Jeff
4.0

Rated 4.03 of 5 – based on 8 votes